
Moving with the Flow: Wave Particles in Flowing Liquids
Hilko Cords

Institute of Computer Science, University of Rostock, Albert-Einstein-Str. 21, 18051 Rostock, Germany

hilko.cords@uni-rostock.de

ABSTRACT

This paper presents a real-time water simulation framework with respect to wave propagation in flowing liquids. The presented
method is based on the coupling of liquid flow simulation and simulation of surface waves. Physically, our system combines
the solution of the Navier-Stokes Equations with the solution of the 2D Wave Equation. Numerically, we combine the concept
of wave particles with a FDM-based flow simulation. Thus, wave propagation in fast flowing liquids (e.g., a creek) can be
simulated – in real-time. Therefore, it is very suitable for today’s video games and VR-environments. Finally, we discuss the
coupling of the liquid simulation with a rigid-body simulation and a fountain simulation.

Keywords: Real-time liquid simulation, rigid-body simulation, water simulation, wave particles, stable fluids, fountain.

1 INTRODUCTION
Due to the immense computational costs of simulation,
surface extraction and rendering the real-time interac-
tive simulation of liquids is an ongoing challenge. This
paper presents a new real-time method to simulate de-
tailed surface waves moving with the flow. Think e.g.,
of a moving river: Rain drop impacts create radial prop-
agating surface waves. These circular waves are mov-
ing with the river flow.

This effect depends on two interfering physical prop-
erties of the liquid:

• 3D flow,
• 2D surface wave propagation.

The river flow depends on moving water masses.
These masses act as the transport medium for the sur-
face waves. The global surface movement can be de-
scribed physically by superposition of both movements.
In complex flows or vortexes, this effect can result in
spectacular chaotic wave movements. In a fast flowing
creek, the mentioned circular waves (rain drop impacts)
can be deformed strongly by the flow.

The flow is described by the Navier-Stokes-
Equations and the propagation of surface waves can
be described by the 2D Wave Equation. In the field
of computer graphics, the Navier-Stokes-Equations
are typically solved with a finite difference approach
(FDM) or the smoothed particle hydrodynamics (SPH)
method. Usually, the 2D Wave Equation is solved with

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency - Science Press, Plzen, Czech Republic

Figure 1: Real-Time Water at 33 FPS.

a finite difference approach. The coupling of both
simulations requires the handling of velocities in the
2D Wave Equation solver. The straight forward intro-
duction of velocities in a finite difference solver results
in numerical instabilities due to the discretization of
the 2D wave field.

This paper presents a stable and fast method to com-
bine the flow simulation with a surface simulation, in-
cluding the movement of surface waves with the flow
and the deformation by the flow. Our work builds on
the concept of wave particles, which has been pre-
sented by Yuksel et al. [YHK07]. They use a particle
system for approximating the 2D Wave Equation and
achieve realistic and plausible results for water surfaces
in real-time. In principle, we add to their concept of sur-
face wave propagation the handling of flowing liquids.
Hence, surface wave propagation in moving liquids can
be simulated (Fig. 1).

Moreover, we present a fast liquid–rigid body cou-
pling and a liquid-fountain coupling. The concepts has
been evaluated in practice, achieving good performance
and plausible results. Hence, our approach is practical
for interactive environments, e.g., VR’s or video games.

2 RELATED WORK

Two dimensional radial propagating waves are de-
scribed by the Wave Equation. Until recently, the
Wave Equation is solved with a finite difference
approach [Gom00] to simulate liquids in the field of
computer graphics. Lately, Yuksel et al. presented an
alternative approximating method to solve the Wave
Equation [YHK07]. They use particles to simulate
the propagating waves with reasonable results at high
frame rates. They also present a coupling of rigid body
simulation and wave particles – resulting in convincing
motor boat simulation in real-time.

The Navier-Stokes equations are usually solved
with the Lagrangian approach (particle-based systems,
e.g., Smoothed Particle Hydrodynamics - SPH), the
Eulerian approach (finite difference approach, FDM)
or hybrid methods – at least in the field of computer
graphics. Large quantities of water or complex effects
are still impossible to simulate physically based at high
frame rates on current personal computers. Stam et al.
presented the first real-time approach for simulating
gaseous phenomena using SPH [SF95]. This approach
has been extended to the interactive simulation of
liquids in [MCG03] allowing simulations with a few
thousand particles at interactive rates. A GPU based
implementation has pushed the limit of simulated
particles in real-time immensely [HKK07]: Tens
of thousands of particles are simulated on the GPU
(GeForce 8800GTX). However, the particles are just
drawn as points – no surface reconstruction algorithm
in real-time has been proposed, demonstrating the
complexity of the surface reconstruction itself. Highly
detailed, but still interactive liquids at real-time fram-
erates (including surface extraction and rendering) can
be reached by superposition of the SPH method and a
FDM based wave equation solver [Cor07a].

The FDM approach for simulating liquids has been
introduced to the computer graphics community as the
marker and cell method [HW65] and has also become
popular [CMT04] [FF01], whereas the implicit tech-
nique for interactive simulation of fluids was introduced
in [Sta99]. This approach has been enhanced for execu-
tion on the GPU with reasonable frame rates [Har05].

To increase performance, approaches have been pre-
sented that replace the 3D Navier-Stokes equations by
2D ones and extract a height-field from density values
[CdVL95]. In this context, column-based height-field
approaches have become popular [OH95] [MFC06].
The 3D simulation space is displaced by columns, de-
creasing the computational costs immensely. Beside
liquid flow simulation, these approaches can also sim-
ulate the propagation of surface waves at interactive
rates. Lately, the Lattice Boltzmann method has been
introduced to the field of computer graphics [TSS+07]:
Instead of solving the Navier-Stokes equations directly,

the Boltzmann equation of kinetic theory of gases is
solved. For neatly chosen parameters, the resulting
flows are equivalent and can be simulated at interactive
rates.

One of the main bottlenecks for interactive anima-
tions is the surface or volume reconstruction from simu-
lation data. In the majority of cases a height-field based
rendering approach is used. The benefit of such a 2,5D
approach is

• fast surface construction and rendering,
• high resolution, and
• the possibility of neat approximations of reflection

and refraction effects.

However, specific complex liquid phenomena, such as
breaking waves or splashes, cannot be visualized as
height-fields. Real-time rendering of height-field based
water surfaces (including reflection and refraction ef-
fects) is usually either based on environment mapping
techniques or approximating raytracing techniques.
The former approach includes a fast technique, split-
ting the environment along the water surface [Sou05]
[SW01]. Even though non-physical, this approach
achieves good visual results and performance [Bel03]
when visualizing lakes and ocean. This approach has
recently been expanded for better approximation of
physical refraction for objects intersecting the water
surface [Cor07b]. Using two height-fields (ground and
surface field), a simplified raytracer can be realized
on the GPU [BD06]: The intersection with refracted
and reflected rays is calculated on the GPU with
reasonable frame rates. Other GPU-based approaches
towards real-time raytracing built upon some major
simplifications have been presented [SKALP05]
[PMDS06].

Alternatively to the height-field based approaches,
an expensive marching cubes algorithm [LC87] can
be used, substantially reducing the possible interactive
simulated amount of liquid but is extracting a real 3D
surface. However, rendering a 3D refractive surface
in a complex environment is still an unsolved prob-
lem. An image-based double refraction (front and back
faces), for instance, can be realized with a two pass ren-
dering approach using an environment map [Wym05]:
The refractive object is split into back and front faces
and is rendered GPU-based. Restricted to static envi-
ronment maps (lying at infinite distance), the approach
achieves reasonable results at high frame rates. How-
ever, this approach cannot refract objects intersecting
the water surface. In other cases, a surface splatting
technique [ZPvBG01] is used for rendering the surface
– anticipating complex refraction effects in real-time as
well. Recently, the projected grid method [Joh04] has
been extended to the rendering of particle based liquids
[MSD07], featuring good performance and splashing
effects.

3 OUR APPROACH
According to liquid simulations solving the full 3D
Navier-Stokes equations for incompressible flows in
real-time, we observe the following problem: Due to
the constraints of real-time, a relatively low sampling
density of the liquid volume has to be used (Eulerian
methods: small grid-size, Lagrangian methods: few
particles). Thus, real-time simulated, fast-flowing liq-
uids tend to show rough surface waves. Hence, we pro-
pose the coupling of a 2D flow simulation and a surface
wave simulation to up-sample the surface (Sect. 3.1).

Figure 2: The basic idea: A 2D flow simulation (here:
In- and Outflow, left) is coupled with a surface wave
simulation (here: circular wave, center), resulting in
wave deformation (right).

We aim at fast moving liquid masses with surface
waves moving with the flow. Hence, fast and detailed
surface effects (e.g., a moving boat, or the wave effect
of a static object in the flow) can be simulated. To reach
a global flow propagation of a liquid with low viscos-
ity (e.g., water), we use an implicit grid-based Navier-
Stokes simulator (Sect. 3.1.1) – similar to [Sta99]. Due
to the particle based approach, the Wave Particle con-
cept [YHK07] (Sect. 3.1.2) is well suited to be cou-
pled with such a Navier-Stokes simulation (Fig. 2, Sect.
3.1.3). Our rendering method, including the approxi-
mation of refraction effects, is described in Sect. 3.1.4.

Finally, we demonstrate the application of our
method in combination with a rigid body simulation
(Sect. 3.2) and a fountain simulation (Sect. 3.3).

3.1 Liquid
The key idea of our liquid simulation is shown in the
following Table:

Region Dim. Simulation Principle
Liquid Flow 2D FDM N.-S. Eq.

Surface 2D Wave Particles Wave Eq.

In the next two Sections both principles are described
separately. In Sect. 3.1.3 the coupling of both concepts
is introduced (Fig. 2).

3.1.1 Flow

The dynamic flow of liquids is described physically by
the conservation of momentum (Navier-Stokes equa-
tions)

ρ

(
∂v
∂ t

+(v ·∇)v

)
= −∇p + μ�v + ρf (1)

and the conservation of mass (continuity equation):

∂ρ
∂ t

+ ∇ · (ρv) = 0, (2)

where v is the velocity field, ρ the density field, p the
pressure field, ∇ = (∂

∂x1
, ∂

∂x2
, ∂

∂x3
)T , � is the Laplacian

with �= ∇2, μ is the viscosity and f is the acting exter-
nal force (e.g. gravity). Since we assume incompress-
ible liquids, the density is constant (∂ρ

∂ t = 0), resulting
in the mass conservation ∇v = 0.

As mentioned above, we use an Eulerian method to
solve these differential equations to reach a global flow
propagation. A lot has been written about algorithms
for solving these equations. We use the implicit Stable
Fluids algorithm presented by Stam et al. [Sta99]. This
algorithm features a good trade-off between accuracy,
stability and performance. It is based on an implicit
finite difference solving scheme (for a detailed descrip-
tion of the algorithm we refer to [Sta99]). Additionally,
to determine the pressure physically, a Poisson Equa-
tion has to be solved numerically – we use the Gauss-
Seidel method for good performance. Furthermore, col-
lision objects (or boundary conditions) can be handled
as slip or no slip objects: The velocity-elements along
the contour of collision objects are set to the opposite
value of the direction of the neighboring liquid grid-
element (slip) or they are set to zero (no-slip).

3.1.2 Surface Waves

The general Wave Equation describes the propagation
of waves in time t and space x. For liquid surface waves
the 2D Wave Equation can be used, describing radial
wave propagation (e.g., a rain drop impact on flat water
surface):

� f (x, t)− 1
c2

∂ 2 f (x, t)
∂ t2 = 0. (3)

Here, � = ∇2 = ∑2
1

∂ 2

∂x2
i

is the Laplace operator in 2D

and c is the velocity at which waves propagate across
the surface. The idea of wave particles is to describe
this propagation with particles (Fig. 2). In the follow-
ing, we give just a brief overview of wave particles (we
refer to [YHK07] for more details): An impact results
in the creation of circular aligned wave particles with
radial velocity. Hence, the particles are moving radi-
ally and describe the propagation of a radial wave. Due
to the particle discretization, the sampling of the prop-
agating circle decreases. In other words, the distance
between particles increases. If the distance reaches a
threshold d, each particle is subdivided into three par-
ticles with distance d

3 . This value becomes the new
threshold d as well. Hence, a minimum sampling of
the wave is guaranteed. The distance d can be deter-
mined without expensive neighbor comparisons. The

distance only depends on the radius r and the number
of particles n of the actual wave (circumference: 2πr):

d =
2πr

n
. (4)

Thus, every particle is animated independently, result-
ing in very fast simulation. By creating several impacts,
wave trains, rain drop impacts or the typical wave prop-
agation of a moving boat are simulated. Beside circular
waves, the technique is also useful to simulate the wave
creation process of swimming objects or linear waves.
The dispersion can be influenced by several parameters:
In combination with different maps, the damping or the
velocity of propagation can be described according to
the type of ground.

Boundary conditions (e.g., collision objects) can be
included easily as particle reflections from boundaries:
Adapting positions and velocities at boundary colli-
sions models the wave reflection process. Due to the
independent movement of the wave particles, physical
wave interference is guaranteed. Merely, diffraction has
to be modeled separately at edges. But in curved water
this inaccuracy is hardly noticeable.

To generate a height-field from a wave particle sys-
tem, all particles are rendered anti-aliased into a 2D tex-
ture t(x,y), which is filtered in both directions (normal-
ized filter). The surface normals are calculated straight-
forwardly. As mentioned in [YHK07] an extended
height-field can enhance the realism of waves: Waves
under influence of wind become spiky. Therefore, the
regularity of x and y positions of the height-field grid is
resolved. We manipulate the vertexes of the height-field
as follows:⎛

⎝ x
y

t(x,y)

⎞
⎠→

⎛
⎝x + c · ∂

∂x t(x,y)
y + c · ∂

∂y t(x,y)
t(x,y)

⎞
⎠ . (5)

The intensity of the height-field extension can be con-
trolled by the parameter c.

3.1.3 Coupling

This work targets surface waves on fast flowing liquids.
Thus, the wave particles have to be coupled with the
flow. Since the surface waves are moving with the flow
but do not create a flow by themselves, the coupling is
one-way:

Flow → waves.

That is, the flow simulation can be executed au-
tonomously, whereas the wave simulation depends on
the flow simulation. Since the waves are represented
by autonomous wave particles, the wave particles have
to be manipulated according to the velocity of the
liquid flow at the same position (Fig. 2). Since the

discretization of the flow depends on a discrete grid of
size n × m, the flow velocity vflow(x) at an arbitrary
position x should be determined using a bilinear filtered
grid. Thus, aliasing artifacts are avoided. The position
pn of each particle n is influenced explicitly by the
determined floating velocity vflow:

pn = pn +�t ·vflow(pn). (6)

Hence, the coupling of wave propagation and liquid
flow is simulated according to nature. The collision
handling of wave particles is not affected by the de-
scribed method and can persist unchanged.

3.1.4 Rendering

This work aims at real-time liquid simulation at high
frame rates. Thus, fast rendering is crucial and fast ap-
proximating techniques are favored. Non-transparent
liquids can be rendered straightforwardly. The visual
behavior of those substances can be approximated using
specific shader programs. For some liquids (e.g., milk),
a subsurface-scattering algorithm can increase realism.
Standard reflection effects can be handled by environ-
ment mapping techniques – at least for surfaces with no
intersecting objects.

For transparent liquids, refraction becomes impor-
tant: We approximate refraction with a simple two-pass
algorithm [Sou05]. The environment without liquid is
rendered into a texture. This texture is accessed dur-
ing the rendering of the height-field according to the
surface positions in projection space and a slight varia-
tion according to the belonging surface normals. Thus,
the refraction is roughly approximated – but without
the typical lens and depth effects. However, this ap-
proach results in plausible results of refraction of sev-
eral swimming objects or collision objects – and re-
quires only one additional render pass. Furthermore,
the use of effects on a per pixel basis (e.g., bumpmap-
ping, chaotic reflexes, motion blurring) can enhance re-
alism even more. In general, the animator can use the
whole scope of shader effects to achieve desired effects.

3.2 Rigid Body Dynamics
One main application of flow simulation in computer
graphics is the simulation of objects swimming in the
flow. The realistic motion of objects in water depends
on rigid body dynamics coupled with the flow and
buoyant forces. The buoyant forces Fb equal the mag-
nitude of the weight of liquid volume displaced by the
rigid body Vdispl (Archimedes’ Principle):

Fb = ρlFgVdispl, (7)

where ρl is the average density of the liquid and
Fg = m · g is the gravity force with mass m and
g ≈ (0 0 −9,81)T N

kg). For a swimming object in

dp
R

Fg

F2Dtrans-Ffrict
pi

rel

Above Water Surface

Under Water Surface

Mass Scale

Figure 3: Rigid Body Simulation.

equilibrium, the gravity force equals the buoyant force:
Fb = Fg. If the fluid’s density exceeds the average
density of the object, the object floats – otherwise, the
object sinks. The rigid body motion for dynamic liquid
surfaces can be determined by the local differences of
Fb and Fg. The movement of a rigid body can then be
separated into a translational displacement T (x) and
a rotational movement R(ω). The rotational part R is
described by the angular momentum M and the acting
forces F in relation to the distance r to the center of
mass:

‖M‖ = ‖r×F‖= ‖mr2 dω
dt

‖. (8)

The translational displacement T (x) can be described
by the derivations of velocities and the acting forces

F2D trans ≈ m ·
(

∂vx
∂ t

∂vy
∂ t

)
, (9)

where vx and vy are the partial derivatives of the 2D ve-
locity field v of the simulated fluid (see Sect. 3.1.1).
However, this approximation neglects the orientation
and immersion depth of the object for translation. But
the influence of these physical properties during ani-
mation is hardly noticeable and would result in signifi-
cant higher computational costs. Moreover, the buoyant
forces during wave animation produce similar move-
ments. Thus, the rigid body motion can be described
according to the center of mass

RCoM =
1
m

∫
rdm, (10)

with an angular acceleration and a translational accel-
eration. Finally, we use a standard damping or fric-
tion force Ffrict depending on the velocity of the rigid
body vRB with different damping parameters b for ob-
ject parts lying beneath or above water level:

Ffrict = −b ·vRB. (11)

We discretize all these equations of rigid body mo-
tions with particle systems. The rigid body is described

(a)

pcol1

pcol2

pcol3d13

d23

Fcf1

-Fcf1

Fcf2

-Fcf2
Fcf3

(b)

Figure 4: Rigid Body Collisions.

by its center of mass RCoM, the n relative constant par-
ticle positions prel

i (1 ≤ i ≤ n) and the rotation matrix
MR describing the orientation of the rigid body:

pi = RCoM + MR prel
i . (12)

MR
t is updated within a time-step t according to the

angular acceleration:

MR
t = MR

t−1 + ΔMR, (13)

where ΔMR is the rotation matrix of Δt · ‖M‖ about the
vector M/‖M‖. Physically, the angular momentum of
a collection of particles is the sum of the angular mo-
menta of each particle. Thus, ΔMR can be determined
by the sum of the angular accelerations of each particle.
Hence, the mathematics is simplified considerably for
arbitrary swimming objects and different object shapes
can be simulated easily. The acting forces for a 2D quad
are shown in Fig. 3. The acting particle masses within
a depth dp under water surface are linearly scaled down
to zero at the free surface, to avoid instantaneous buoy-
ant force changes if a particle cuts the liquid surface. In
other words, the volume of object parts lying under wa-
ter is determined smoothly, even for objects represented
by just few particles.

For collision handling, we use a force based ap-
proach. We distinguish between

• static object - dynamic object collisions and
• dynamic object - dynamic object collisions.

The former are handled by a static force field surround-
ing static objects (Fig. 4a). Thus, the acting collision
force on each particle can be determined with one sin-
gle memory access.

Dynamic object collisions are handled by an approx-
imation: Depending on the distance between dynamic
objects, a force acts between them in opposite direction
(Fig. 4b). Therefore, we introduce collision particles
pcol to dynamic objects. The particles are used to de-
termine the distance d and the acting collision forces
Fcf. Cubes as rigid bodies can be simulated well with
just one collision particle in the center of the cube, but
more collision particles should be used for objects with
complex shape. A linear kernel describes the acting
collision force. The neighbors can be found efficiently
within the kernel size using a regular grid, where the
grid-size equals the kernel size. The described method

(a) (b) (c) (d) (e) (f) (g)

Figure 5: Fountain: Coupled with liquid simulation (seen from above, a), collisions (b,c). Surface extraction:
spherical potentials (d,e), ellipsoidal potentials (f,g).

does not prevent overlapping of rigid bodies and sim-
ulates conservation of momentum just roughly. How-
ever, for moderate object velocities, the described han-
dling reaches fast and pleasing results without any over-
lapping problems (Fig. 6).

3.3 Fountain
In the following, we describe the particle creation
process for fountains of external inflow, e.g., water
splashing out of a pipe. Our particle based fountain
simulation is based on the assumption that the interac-
tion between falling liquid particles, splashing particles
or drops is negligible. The only acting force is gravity
and no liquid specific forces have to be calculated:
Fg = mg. Hence, the integration over time is trivial
and very fast. The intensive process of neighbor
searches and numerical calculations within a SPH
simulation or the free surface determination within a
FDM simulation leaves out. Thus, more particles can
be used in splashes (compared to full physics based
simulation), allowing a plausible real-time simulation.

However, when omitting interactions between parti-
cles for rapid simulation, the creation process of par-
ticles becomes significant. The natural chaotic appear-
ance of splashes should result in a creation process with
caution. Imitating nature, the particle creation in foun-
tains or splashes depends among others on a random
function. Thus, the chaotic nature of liquids in such
situations can be faked.

Particles are created in a discrete cubic volume
(�x,�y,�z) around xoffs. using random positions:

x = xoffs. +

⎛
⎝rneg�x

rneg�y
rneg�z

⎞
⎠ . (14)

The initial velocities also depend on random functions:
The particle velocities are distributed according to one
main direction R∗ (1,0,0) and two apex angles:

vinit = R ·
⎛
⎝r · vmain + vmain offs.

rneg · vapex 1

rneg · vapex 2

⎞
⎠ . (15)

R is a rotation matrix changing main direction, r and
rneg are random functions (0 ≤ r ≤ 1; −1 ≤ rneg ≤ 1)

and vmain offs. is the minimum speed of liquid outflow.
Using these parameters, a flow can be modelled any-
where with any direction and any main velocity. How-
ever, other particle creation functions are possible and
can be used to model special situations.

Another parameter for controlling the flow is the
number of created particles nc per time step. Modeling
flow intensity variations, we use the following formula:

nc = nmin + r ·�n. (16)

nmin is the minimum number of created particles per
time step and �n is the intensity of variation. Instanta-
neous variations of nc models the change of flow inten-
sity. If nc equals to zero, no liquid flow occurs.

If a fountain particle hits the liquid surface, it is de-
stroyed and creates wave particles. Hence, a radial
wave propagates, starting from the impact position (Fig.
5a). Using collision handling for fountain particles, re-
alistic splashes even at moving objects can be modeled
in real-time (Fig. 5b,c). Thereby, we use the same col-
lision handling as described in Sect. 3.2.

For 3D surface reconstruction of the fountain we use
a traditional Marching Cubes (MC) algorithm [LC87].
The isosurface for n particles with positions xi (i =
1 . . .n) is determined by the following potential (h: iso-
radius):

φ(x) =
n

∑
i=1

√
1− ‖x−xi‖2

h2 (17)

The square root (Eq. 17) can be approximated to in-
crease performance. The performance is good, due to
a small, adaptive splashing volume being used for im-
plicit function and iso-surface generation. Additionally,
performance increases at low sampling and small parti-
cle potentials used in implicit function generation. To
increase details and decrease the blobby-ness of the sur-
face, we don’t use strict spherical potentials but ellip-
soidal potentials along the particle velocities.

v v

Hence, the fountain becomes more detailed and fili-
gree along the velocity direction (Fig. 5d-g).

(a) (b) (c) (d)

Figure 6: Examples of the proposed method – please see accompanying video for animations.

4 IMPLEMENTATION AND RESULTS
The proposed algorithms were implemented using
OpenGL 2.0 and the related shading language GLSL
in C++. The presented examples were performed on
a dual-core desktop PC with a 2,6 GHz AMD Athlon
64 CPU, 2GBs of RAM and a graphics card based
on an ATI Radeon x1900 GPU. We use a parallel
implementation and split the simulation between two
cores as shown in the following Table:

Surface Extraction

Wave Eq. N.-S. Eq. FountainRigid-B.

Core 1:

Core 2:

Interaction Rendering

The GPU is used for fast height-field rendering and
refraction simulation. The physically based simula-
tion tasks are performed CPU based. Hence, the per-
formance could be increased immensely, using GPU-
based implementations for parts of the physical simu-
lation. The FDM flow simulation is especially suited
to be performed on the GPU. However, the measured
frame rates achieved with the actual implementation
are quite satisfactory, as shown in Table 1 (Resolution:
1024×1024 pixels). Take note that already small grid-
sizes NS-GS lead to convincing flow results – due to the
explicit handling of surface waves. The performance
and complexity of the proposed technique mainly de-
pends on the following parameters:

• Eulerian grid-size (O(n2)),
• number of wave particles (O(n)),
• surface resolution (O(n2)),
• number of rigid body particles (O(n)),
• number of rigid b. collision particles (O(n logn)),
• number of fountain particles (O(n)) and resolution

of associated reconstruction volume (O(n3)).

However, a problem of the technique shared with
many other height-field based liquid simulation tech-
niques is the impossibility to visualize 3D liquid ef-
fects (e.g., splashes or breaking waves). At least, the
mentioned extended height-field allows the rendering
of surfaces, slightly exceeding the 2,5D surface and the

Figure NS-GS 2. WP (max) S-GS FPS
1 32×64 40000 128×256 33

6a,b,c 32×32 20000 128×128 74,76,23
6a 64×64 20000 128×128 70
6a 128×128 20000 128×128 27
6a 256×256 40000 256×256 4
6d 16×128 40000 64×512 26

Table 1: Performance measurements of the presented
algorithms in different scenarios (Gridsize of Navier-
Stokes Eq. solver (NS-GS), maximum number of used
wave-particles (WP), surface grid-size (S-GS), exam-
ples 6a,c,d use 100 rigid body objects).

presented fountain model solves this problem in special
scenarious.

The presented method allows the simulation of a 2D
flow (e.g., a river) at high performance, whereas the sur-
face remains detailed and the surface waves and numer-
ous rigid bodies are propagating with the flow – indicat-
ing e.g. the flow direction. Recapitulating, the benefits
of the presented combination of flow and surface simu-
lations are:

• Physically based flow simulation,
• physically based wave simulation,
• flow interactions (e.g., moving boat, turbine),
• objects moving with the flow (e.g., leafs, objects),
• automatic, natural and global flow (e.g., creek),
• interactive wave creation (e.g., rain, moving obj.).

The low viscosity of real water cannot be reached in
real-time with full 3D Navier-Stokes simulation meth-
ods (due to large time-steps and the necessary damp-
ing), resulting in a liquid behavior more like oil than
real water. The presented method reduces these vis-
cous effects, due to the fast calculation of the 2D flow
and the 2D Wave Equation. Hence, the viscosity of the
simulated fluid appears to be low. In addition, while de-
creasing the time-steps or reducing speed the convinc-
ing simulation of liquids with a viscosity greater than
the viscosity of physical water, such as oil, honey or
molten wax, can be achieved easily.

5 CONCLUSION/FUTURE WORK
We have presented a concept for real-time liquid
simulation with focus on wave propagation in flowing
liquids. The basic idea is the coupling of a 2D Navier-
Stokes simulation for flow description and a 2D Wave
Equation simulation for surface waves propagation.
The solver is based on the Stable Fluids algorithm
[Sta99] and the wave particles algorithm [YHK07].
Furthermore, we present methods for real-time rigid
body simulation of several hundred objects swimming
in the liquid and a real-time fountain simulation inter-
acting with the liquid. The resulting liquid is rendered
height-field based at high frame rates.

We demonstrated the potential of combining exist-
ing methods and a new coupling scheme according to
the simulation of plausible, complex liquid effects in
real-time. Of course, those effects have been used in
computer animated films with perfect quality (based on
slow off-line techniques), but not in real-time environ-
ments at high frame rates. Hence, our approach is prac-
tical for interactive environments, e.g., VR’s or video
games. In view of multi-core architectures, our ap-
proach can enhance realism of such environments im-
mensely. Although aiming for real-time environments,
our fast method is interesting for high quality off-line
rendering applications as well.

Our future investigation includes a better rendering
approach (e.g., GPU-based approximated raytracing),
the use of a column based approach or a SPH approach
for flow simulation. As well, the collision handling of
many colliding objects at the same time should be en-
hanced. In those situations, our method tends to un-
wanted intersection effects. We would also like to use
the GPU for numerical calculations to increase perfor-
mance immensely. Finally, the use of adaptive surface
rendering and simulation techniques would decrease
complexity and much larger liquid volumes could be
simulated.

REFERENCES
[BD06] L. Baboud and X. Decoret. Realistic water volumes in

real-time. In Eurographics Workshop on Natural Phe-
nomena. Eurographics, 2006.

[Bel03] V. Belyaev. Real-time simulation of water surface. In
GraphiCon-2003, pages 131–138, 2003.

[CdVL95] J. X. Chen and N. d. V. Lobo. Toward interactive-
rate simulation of fluids with moving obstacles us-
ing navier-stokes equations. Graph. Models Image
Process., 57(2):107–116, 1995.

[CMT04] M. Carlson, P. Mucha, and G. Turk. Rigid fluid: Ani-
mating the interplay between rigid bodies and fluid. In
ACM Transactions on Graphics, volume 23, pages 377–
384, 2004.

[Cor07a] H. Cords. Mode-splitting for highly detailed, interac-
tive liquid simulation. Proceedings of GRAPHITE’07,
pages 265–272, 2007.

[Cor07b] H. Cords. Refraction of water surface intersecting ob-
jects in interactive environments. Proceedings of the

4th Workshop in Virtual Reality Interactions and Phys-
ical Simulations (VRIPHYS’07), pages 59–68, 2007.

[FF01] N. Foster and R. Fedkiw. Practical animation of liquids.
In Proceedings of SIGGRAPH’01, pages 23–30, 2001.

[Gom00] Miguel Gomez. Interactive simulation of water sur-
faces. In Game Programming Gems, pages 187–195.
Charles River Media, 2000.

[Har05] M. Harris. Fast fluid dynamics simulation on the gpu.
In ACM SIGGRAPH 2005 Courses, 2005.

[HKK07] T. Harada, S. Koshizuka, and Y. Kawaguchi. Smoothed
particle hydrodynamics on gpus. In Computer Graphics
International, 2007.

[HW65] F. H. Harlow and J. E. Welch. Numerical calcula-
tion of time-dependent viscous incompressible flow of
fluid with free surface. Phys. Fluids, 8(12):2182–2189,
1965.

[Joh04] C. Johanson. Real-time water rendering - introducing
the projected grid concept. Master of Science Thesis
(Lund University), 2004.

[LC87] W. E. Lorensen and H. E. Cline. Marching cubes: A
high resolution 3d surface construction algorithm. In
Proceedings of SIGGRAPH ’87, pages 163–169, 1987.

[MCG03] M. Müller, D. Charypar, and M. Gross. Particle-based
fluid simulation for interactive applications. In Pro-
ceedings of Symposium on Computer animation (SCA
’03), pages 154–159. Eurographics Association, 2003.

[MFC06] M. M. Maes, T. Fujimoto, and N. Chiba. Efficient
animation of water flow on irregular terrains. In
GRAPHITE ’06, pages 107–115, 2006.

[MSD07] M. Müller, S. Schirm, and S. Duthaler. Screen space
meshes. In Symposium on Computer Animation, 2007.

[OH95] J. F. O’Brien and J. K. Hodgins. Dynamic simulation
of splashing fluids. In Symposium on Computer Anima-
tion, 1995.

[PMDS06] V. Popescu, C. Mei, J. Dauble, and E. Sacks. Reflected-
scene impostors for realistic reflections at interactive
rates. Computer Graphics Forum, 25(3):313–322, Sep-
tember 2006.

[SF95] J. Stam and E. Fiume. Depicting fire and other
gaseous phenomena using diffusion processes. Com-
puter Graphics, 29:129–136, 1995.

[SKALP05] L. Szirmay-Kalos, B. Aszódi, I. Lazányi, and M. Pre-
mecz. Approximate ray-tracing on the gpu with dis-
tance impostors. In Computer Graphics Forum (Proc.
of Eurographics 2005), volume 24, 2005.

[Sou05] T. Sousa. Generic refraction simulation. In GPU Gems
2, pages 295–305. Addison-Wesley, 2005.

[Sta99] J. Stam. Stable fluids. In Siggraph 1999, Computer
Graphics Proceedings, pages 121–128. Addison Wes-
ley Longman, 1999.

[SW01] J. Schneider and R. Westermann. Towards real-time vi-
sual simulation of water surfaces. Proceedings of the
Vision Modeling and Visualization Conference, pages
211–218, 2001.

[TSS+07] N. Thuersey, F. Sadlo, S. Schirm, M. Mueller, and
M. Gross. Real-time simulations of bubbles and foam
within a shallow-water framework. 2007.

[Wym05] C. Wyman. An approximate image-space approach for
interactive refraction. ACM Trans. Graph., 24(3):1050–
1053, 2005.

[YHK07] C. Yuksel, D. H. House, and J. Keyser. Wave particles.
ACM Siggraph 2007 Conference Proceedings, 2007.

[ZPvBG01] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Sur-
face splatting. In Proceedings of SIGGRAPH’01, pages
371–378. ACM Press, 2001.

